BUILDING SMART ELECTRIC INFRASTRUCTURE: A PILLAR FOR AFRICA'S DIGITAL EDUCATION TRANSFORMATION

OBI, WILLIAMS J.D Ph.D

willies2nice@yahoo.com 07034964385

UKA, CHUKWUMA Ph.D

ukachuma@yahoo.com 08088186938

ENGR. OKOYE-ENEMUO DOMINIC

minicjay@yahoo.com 07037735237

OBI, CATHERINE ODINAKA CHINYERE Ph.D

obikate4@gmail.com 07057466640

Department of Electrical/Electronics Technology Education Federal College of Education (Technical), Umunze Anambra State.

Abstract

As Africa embraces the digital age, the transformation of its educational landscape through technology has become a key priority for sustainable development. Digital education initiatives ranging from e-learning platforms and virtual classrooms to online resources and ICT-integrated teaching have the potential to bridge educational gaps, enhance learning outcomes, and prepare a future-ready workforce. However, the success of these initiatives is critically dependent on a foundational yet often overlooked component: reliable and accessible electricity. This paper examines the indispensable role of electric infrastructure in supporting the implementation and expansion of digital education across the African continent. It examines the current state of energy access, highlighting widespread deficits and regional disparities, particularly in rural areas where many schools remain off-grid or face frequent power outages. These challenges significantly hinder the functionality of digital tools, internet connectivity, and online learning platforms, thus widening the digital divide and limiting equitable access to education. Through detailed analysis, the paper underscores how reliable electricity empowers students and teachers alike facilitating interactive learning, improving instructional delivery, and enabling access to global knowledge systems. Furthermore, the paper advocates for integrated policies that align energy and education development, emphasizing the importance of publicprivate partnerships, renewable energy deployment, and capacity-building for educators. In conclusion, it asserts that electricity is not merely a technical requirement, but a transformative enabler of digital education. Without sustained investment in electric infrastructure, Africa's digital education revolution will remain aspirational rather than achievable. The paper calls for immediate and coordinated action to ensure that every African child, regardless of location, has the power to learn, grow, and thrive in the digital era.

Keywords: Digital Education, Smart Electric Infrastructure.

Introduction

Education has long been recognized as a powerful engine for societal transformation and sustainable development across Africa (Obi 2021). According to the author education shapes individuals, empowers communities, and drives innovation and economic growth. In the contemporary world, education is increasingly becoming digital, hence digital education. According to World Economic Forum (2021), digital education also known as online or e-learning refers to the use of digital technologies to support and enhance teaching and learning process. It harnesses technology to deliver knowledge beyond the boundaries of traditional classrooms. Africa as a continent with rapidly growing youth population and vast geographical challenges, digital education presents a unique opportunity to democratize learning, improve educational outcomes, and foster a more inclusive knowledge economy.

Considering, the global shift toward digitalization, the potential for technology to revolutionize the educational landscape in Africa is both immense and inspiring. E-learning platforms, digital textbooks, online courses, mobile learning applications, virtual laboratories, and AI-powered limited infrastructure, teacher shortages, and lack of learning materials. These innovations make it possible for students in remote villages to access the same quality of education as those in urban centers, thereby narrowing the long-standing rural-urban educational divide. However, the effective deployment of digital education tools is critically dependent on one essential resource: reliable and sustainable electricity. Power is the invisible backbone that supports every component of a digital learning environment from the operation of smartboards and internet routers to the charging of laptops, tablets, and smartphones. Digital content delivery, cloud storage, real-time interaction through virtual classrooms, and even data collection for policy planning all hinge on uninterrupted access to electrical

power. Without electricity, the promise of digital education becomes an illusion, especially for the many underserved communities in Africa (Rural Electrification Agency REA, 2022).

The digital education initiatives in Africa according to Jere and Ayenew (2020), is designed to bridge educational inequalities, provide equitable access to quality learning, and prepare the continent's youth for the demands of a digital-first global economy. It envisions a future where every African child can learn using upto-date resources, engage with the global knowledge community, and acquire 21st-century skills such as coding, digital literacy, and critical thinking. Yet, achieving these ambitious goals requires more than policy declarations or the introduction of new technologies, it requires a dependable electric infrastructure to support and sustain the digital ecosystem. Electric infrastructure is also known as a smart grid, is an innovative power system that leverages information and communication technology to monitor, manage and optimize electricity in real time (Ngware & Abuya, 2019).

In this context, the importance of building smart electric infrastructure goes beyond being a supporting factor, it is a foundational pillar upon which the success of Africa's digital education aspirations rests. Electric infrastructure refers not only to the physical components of power generation and distribution but also to the policy frameworks, financial investments, and technological innovations needed to ensure widespread and equitable access to electricity. Whether through grid expansion, decentralized renewable energy solutions such as solar mini-grids, or public-private partnerships, building robust smart electric infrastructure is a non-negotiable step toward achieving educational equity and excellence in the digital age. This paper contends that electric infrastructure is more than a facilitator of digital learning. It is a strategic necessity for Africa's educational transformation.

State of Electric Infrastructure in Africa

Africa's energy access crisis remains one of the most pressing challenges to development on the continent. Although Africa is home to approximately 16% of the global population, it generates only 3% of the world's electricity supply (International Energy Agency, 2020). This significant mismatch between population size and electricity production highlights a deep-seated infrastructural imbalance that has farreaching implications for socio-economic development, particularly in the education sector.

The most acute energy deprivation is found in sub-Saharan Africa, where nearly 600 million people live without access to electricity. In this region, energy poverty is not just an issue of availability but also one of inequality and exclusion. Urban areas tend to have better access to electricity, albeit inconsistent, while rural communities where over 60% of Africa's population resides suffer from chronic energy shortages or a complete lack of connection to national grids (World Bank, 2021).

This inequality is particularly troubling when viewed through the lens of educational access. Rural schools are disproportionately affected. The World Bank (2021) estimates that only about 30% of rural schools in sub-Saharan Africa have access to electricity. This means that millions of school-aged children are being educated in environments that lack the very basic infrastructure needed to support modern, digital learning methods. Without access to electricity, schools are unable to power computers, tablets, projectors, or internet routers. Online learning platforms, digital examinations, virtual classrooms, and other tech-driven educational initiatives cannot be implemented effectively. For example, during the COVID-19 pandemic, digital learning was a global solution for continued education, yet many African schools particularly in off-grid regions were excluded from this shift due to their

inability to power or connect digital devices (United Nations Educational, Scientific and Cultural Organization UNESCO, 2020).

Challenges of Existing Electric Infrastructure

In urban and urban areas where electricity access is relatively more available, quality and reliability remain major concerns. Many African countries suffer from frequent power outages, load shedding, and voltage fluctuations, which severely undermine the continuity of teaching and learning. According to African Development Bank (2022), these systemic failures are symptoms of outdated and overstressed electric grids that struggle to meet increasing demand. Moreover, even where schools are connected to the national grid, the unpredictable nature of power supply means that institutions are forced to rely on alternative power sources such as diesel generators. While these generators may offer temporary relief, they come with substantial drawbacks: they are expensive to operate, prone to mechanical failures, and emit harmful pollutants that contribute to environmental degradation. According to UNEP (2021), the carbon emissions from diesel generators in sub-Saharan Africa are growing at an alarming rate due to increased dependence in the absence of stable grid electricity.

Also, the economic impact is equally concerning. Operating and maintaining backup generators place a significant financial burden on already underfunded public schools. This diverts limited resources away from critical areas such as learning materials, teacher training, and infrastructure development, further entrenching the cycle of poor educational outcomes.

Another layer of complexity is the technical inefficiency of many national grids. Power transmission and distribution networks in Africa are often plagued by outdated infrastructure, leading to technical losses that exceed 15% in many countries (IEA, 2020). Such losses reduce the amount of usable electricity available to endusers, including educational institutions. As a result, even when electricity is

generated, it does not always reach the intended beneficiaries due to poor infrastructure and management practices.

Impact of Electric Infrastructure in Digital Education

Access to reliable electricity has a profound impact on addressing disparities in education across different regions in Africa. The stark contrast between urban and rural educational outcomes is frequently tied to the availability of basic infrastructure, especially electricity. According to the UNESCO (2022), students in rural areas are significantly disadvantaged in terms of access to modern learning resources due to infrastructural deficits, particularly the lack of power supply.

Reliable electricity allows schools in remote and underserved areas to utilize the same digital tools and platforms as those in better-served urban environments. These tools include digital whiteboards, learning management systems (LMS), virtual libraries, educational videos, and simulation-based science experiments. When these resources are powered consistently, they serve as critical equalizers, giving every student regardless of location equal opportunity to succeed academically. Without electricity, digital classrooms grind to a halt, leaving students disconnected from the curriculum. Jere and Ayenew (2020) opined that students in electrified schools showed significantly improved academic performance compared to those without electricity, largely due to the ability to study after dark, access multimedia content, and participate in digital instruction.

Furthermore, power outages and fluctuating voltage levels contribute to inconsistent learning schedules, missed deadlines, and disengagement. These disruptions reduce instructional time, impact cognitive retention, and lower student motivation. In digital education environments where continuity is key such as with video lectures or real-time interactive lessons frequent interruptions translate directly into learning loss (World Bank, 2021).

However, with sustained electricity access, rural students are empowered to join live virtual classes, download instructional videos, access national and international e-libraries, and develop digital competencies skills that are crucial in the global digital economy. Thus, electricity is not only a utility but a catalyst for equity in African education systems.

Investing in Electric Infrastructure

A compelling economic justification for investing in electric infrastructure especially through sustainable energy systems lies in the significant reduction of operational costs for schools. Across many African countries, where connection to national grids is unreliable or absent, schools rely heavily on diesel-powered generators for electricity. These generators are not only expensive to run, but also contribute to air pollution and carbon emissions, creating both financial and environmental burdens (International Renewable Energy Agency, 2020).

More also, the costs of fuel, frequent maintenance, and parts replacement can consume a substantial portion of school budgets, especially in rural or underfunded institutions. UNESCO (2021), found that schools in sub-Saharan Africa spend up to 30% of their annual operational budget on fuel and generator upkeep. These are funds that could otherwise be redirected toward core educational priorities such as acquiring digital devices, updating curricula, or improving teacher salaries and student support services.

In furtherance, by investing in renewable energy solutions like solar photovoltaic systems, schools benefit from lower ongoing costs and minimal maintenance, after the initial installation. Solar energy, in particular, is abundant in Africa, with more than 85% of the continent receiving over 2,000 kWh/m² of solar energy annually (World Bank, 2022). Countries such as Kenya and Nigeria have begun to implement solar electrification programs in public schools, yielding notable cost savings and more stable learning environments.

Moreover, in Nigeria's northern region, the Nigeria Electrification Project (NEP) implemented by the Rural Electrification Agency (REA) has delivered solar hybrid mini-grids to educational institutions, drastically reducing dependency on fuel-based generators and saving schools an average of \$500 to \$1,000 USD monthly (REA, 2022). These savings allow schools to invest more in teaching materials, elearning tools, and infrastructure upgrades, contributing to better educational outcomes. Furthermore, adopting electric infrastructure enhances predictability in school operations. Uninterrupted access to electricity reduces downtime and allows for consistent academic schedules essential for student performance and school accountability.

The Role of Electric Infrastructure in Digital Education

In powering digital tools and platforms, electric infrastructure is the indispensable engine driving the integration of technology into education. Every component of digital learning from basic hardware like laptops, tablets, and projectors, to advanced technologies such as interactive whiteboards, virtual labs, and augmented/virtual reality systems requires a continuous and stable supply of electricity to function effectively (UNESCO, 2020). The absence of electricity effectively shuts down access to these tools, rendering digital education initiatives ineffective or impossible to implement.

The impact of this limitation is especially visible in rural and underserved communities across Africa. The lack of electricity infrastructure further widens the digital divide the gap between those with access to digital technologies and those without. In these regions, even when schools receive donations of digital devices, their utility is limited or entirely negated due to an inability to charge and operate them (World Bank, 2021). Many schools faced challenges in keeping the devices operational due to intermittent solar power availability and the lack of technical capacity to handle system breakdowns. (Ngware & Abuya, 2019).

This scenario underscores a critical truth. Electricity is not optional it is foundational to any digital education ecosystem. Digital tools cannot operate in isolation from reliable energy sources, and as such, electric infrastructure should be considered a core component of educational planning, particularly when rolling out tech-based initiatives. Enabling Sustainable Education Systems Beyond merely powering devices, robust electric infrastructure contributes significantly to the sustainability and resilience of education systems. Traditional backup power sources such as diesel generators, though commonly used in many African schools, are expensive, unsustainable, and ecologically harmful. The high operational costs associated with diesel fuel consumption and generator maintenance often consume a significant portion of school budgets that could otherwise be used to purchase learning materials or train teachers (United Nation Environment Programme, 2021).

Renewable energy solutions such as solar photovoltaics, wind turbines, and mini-grids present viable alternatives. These technologies not only offer cleaner energy but also provide a more reliable and decentralized power supply, particularly suitable for remote locations. Schools can operate independently of national grids, ensuring that teaching and learning are not interrupted by national energy shortages or blackouts.

Additionally, such green energy solutions align with Sustainable Development Goal 4 (Quality Education) and Goal 7 (Affordable and Clean Energy), reinforcing Africa's broader commitment to sustainable development. Schools powered by renewables also serve as learning hubs where students are introduced to clean energy technologies, instilling a culture of environmental responsibility. Improving Access to Digital Resources Electricity is intrinsically linked to internet connectivity, which serves as the gateway to vast repositories of online educational content, learning management systems, virtual classrooms, and global academic networks. Routers, modems, computers, and data servers all require electricity to function. Without

electricity, even in areas where mobile or broadband networks are available, digital learning becomes a theoretical concept rather than a practical reality.

This connection between power and digital access is clearly demonstrated in South Africa, where the national electrification rate stands at approximately 84% (IEA, 2023). As a result, many urban and urban schools have successfully adopted virtual learning environments (VLEs), including Google Classroom, Moodle, and Zoom-based instruction. The rise of online learning platforms like the University of South Africa (UNISA)'s virtual campus has enabled thousands of students to pursue education without the constraints of geography. Electric infrastructure plays a critical, multi-dimensional role in enabling digital education in Africa. It powers the hardware and platforms that define modern learning, facilitates sustainable energy use, and opens doors to global educational content through internet access. For Africa to leapfrog into a digitally empowered educational future, investments in energy infrastructure must be strategically integrated into national education plans. Electricity is more than a utility it is the fuel for innovation, equity, and academic excellence.

Conclusion

To ensure that digital education becomes a reality for all African learners, governments and stakeholders must adopt holistic, inclusive, and sustainable strategies that address both the energy and educational needs of schools. Building electric infrastructure presents a unique opportunity to accelerate national development, close equity gaps, and prepare Africa's youth for the digital economy of the future.

Recommendations

1. Creation of integrated policy frameworks that align energy infrastructure development with educational goals. This calls for strategic collaboration between national ministries particularly the Ministries of Education, Energy,

and ICT to ensure that education sector plans account for the power needs of schools.

- 2. Investing in renewable energy technologies such as solar photovoltaics, wind turbines, and biomass systems offer practical, scalable, and sustainable solutions for powering educational institutions across Africa, especially in rural regions far from centralized power grids. These technologies are not only environmentally friendly but also cost-effective over the long term due to low operational and maintenance expenses.
- 3. Capacity building for teachers and administrators: Access to electricity and digital tools is insufficient if teachers and school administrators lack the skills to effectively utilize them. Governments, in collaboration with NGOs and teacher training institutions, must invest in capacity building that empowers educators to integrate digital tools into their pedagogy. Training programs should focus on digital literacy, use of e-learning platforms, ICT maintenance, and content development. Additionally, school administrators should be trained on managing electric systems especially solar installations so that they can oversee daily usage, troubleshoot basic issues, and coordinate with service providers.
- 4. Governments should develop national school electrification roadmaps, which identify priority regions and match them with the most appropriate electrification strategy, ensuring cost-efficiency and maximum coverage

References

African Development Bank (AfDB). (2022). Annual Development Effectiveness Review: Energy Sector Report.

African Union Commission (AUC). (2021). *Continental Education Strategy for Africa (CESA 2016–2025)* – Midterm Evaluation Report.

International Energy Agency (IEA). (2023). Africa Energy Outlook 2023.

- IEA (2022). Africa Energy Outlook 2022. International Energy Agency.
- IRENA (2020). Renewable Energy Benefits: Measuring the Economics. Abu Dhabi: International Renewable Energy Agency.
- Jere, N. R., & Ayenew, M. (2020). Electricity Access and Education Outcomes in Sub-Saharan Africa. *Energy Policy Journal*, 140, 111432.
- Ngware, M. & Abuya, B. (2019). EdTech Initiatives in East Africa: Opportunities and Challenges. African Population and Health Research Center.
- Obi, C.O.C (2021). Relative effectiveness of demonstration and project-based teaching methods in developing students' psychomotor skill and interest in electrical installation and maintenance work. *Unpublished doctoral dissertation*, Department of Technology and Vocational Education. Nnamdi Azikiwe University, Awka.
- REA (2022). Nigeria Electrification Project Progress Update. Abuja: Rural Electrification Agency.
- UNESCO (2021). *Reducing School Costs Through Renewable Energy*. Paris: United Nations Educational, Scientific and Cultural Organization.
- UNESCO. (2020). Innovative Teaching Practices in Rural Ethiopia: Overcoming Energy Challenges in Teacher Training.
- UNESCO. (2022). Global Education Monitoring Report: Technology in Education A Tool on Whose Terms?
- United Nations Environment Programme (UNEP). (2021). The Role of Renewable Energy in Africa's Sustainable Development.
- World Bank (2022). *Tracking SDG7: The Energy Progress Report*. Washington, DC: World Bank Group.
- World Bank. (2021). Tracking SDG 4 and SDG 7: Bridging the Energy and Education Divide in Africa.
- World Bank. (2022). The State of Access to Modern Energy in Africa.
- World Economic Forum (2021). *Powering Education: Infrastructure and Innovation in the 21st Century*. Geneva: WEF.